A
B
C
Ç
D
E
F
G
Ğ
H
I
İ
J
K
L
M
N
O
P
R
S
Ş
T
U
Ü
V
Y
Z
Q
W
X
+ Ekle
Leonardo Fibonacci

Leonardo Fibonacci

 

Leonardo Fibonacci, (Pisalı LeonardoLeonardo Pisano d. 1170, ö. 1250), yaygın olarak ismiyle Fibonacci diye anılan, orta çağın en yetenekli matematikçisi olarak kabul edilen İtalyan matematikçi.

Fibonacci modern çağda en fazla Hint-Arap Sayılarını Avrupa'ya getirmesiyle ve 13. yüzyıl başlarında yayınlanan Liber Abaci isimli hesaplama yöntemleri kitabıyla tanınır. Liber Abaci'de bir örnek olarak yer alan modern sayılarla hesaplanmış kendi adıyla anılan sayı dizisi Fibonacci Dizisi olarak anılmaktadır. Sadece Fibonacci dizisi ve özellikleri ile ilgili kitaplar hatta haftalık düzenli yayınlanan matematik dergileri bile bulunmaktadır.

 

Leonardo tahmini 1178 yılında İtalya'nın Pisa şehrinde doğdu. Kesin doğum tarihi bilinmemektedir. Babası Guglielmo'dur.Takma adı Bonaccio idi ve bu ad, iyi tabiatlı veyasade ruhlu anlamına gelmekteydi. Annesi Alessandra,Leonardo 9 yaşındayken öldü. Leonardo babasının takma adını miras olarak aldı. İtalyanca Filius Bonacci, Bonacci'nin oğlu anlamına gelmekteydi ve Leonardo bu nedenle Fibonacci diye anılmaya başlandı.[4]

Babası Guglielmo Cezayir'in Béjaïa limanı ile İtalya'nın Bugia kenti arasında bir ticaret postasını idare etmekteydi. Genç bir çocuk olan Leonardo babasına yardım etmek için onunla seyahat ederdi. Burası Leonardo'nun Hint-Arap sayı sistemini öğrendiği yerdir.

Fibonacci Hint-Arap sayıları ile aritmetik işlemler yapmanın Roma rakamları ile hesap yapmaktan çok daha basit ve verimli olduğunu gördü. Leonardo bütün Akdeniz bölgesini gezdi ve dönemin önde gelen Arap matematikçiler ile çalışma olanağı buldu. Leonardo yaklaşık olarak 1200 yıllarında bu seyahatinden döndü. 1202 yılına gelindiğinde 32 yaşında, öğrendiklerini 

"abaküs kitabı"veya "hesaplama kitabı" anlamına gelen Liber Abaci isimli eserinde topladı. Yayınladığı bu eserinde Hint-Arap Sayı Sistemi'ni avrupa'ya duyurdu.

 

Leonardo matematik ve bilim ile ilgilenmeyi seven Roma İmparatoru II. Frederick ile dost oldu. 1240 senesinde Pisa cumhuriyeti kendisini Leonardo Bigollo namıyla taltif edip onurlandı ve maaş bağlandı.[5] 19. yüzyılda Pisa'da Fibonacci heykeli yapılmış ve buraya dikilmiştir. Heykel bugün Camposanto'nun batı galerisinde ve Piazza dei Miracoli tarihi mezarlığında bulunmaktadır.


FİBONACCİ DİZİSİ

     Gelelim Fibonacci´nin ünlü sorusuna..

     "Bir çift yavru tavşan( bir erkek ve bir dişi) var. Bir ay sonra bu yavrular erginleşiyor.. 

Erginleşen her çift tavşan bir ay sonra bir çift yavru doğuruyorlar. Her yavru tavşan bir ay sonra erginleşiyorlar. Hiç bir tavşanın ölmediğini ve her dişi tavşanın bir erkek bir dişi yavru doğurduğunu 

varsayalım.   Bir yıl sonra kaç tane tavşan olur?"

   1. İlk ayın sonunda ,  sadece bir çift vardır.
   2. ikinci ayın sonunda  dişi bir çift yavru doğurur, ve elimizde 2 çift tavşan vardır.
   3. Üçüncü ayın sonunda,  ilk dişimiz bir çift yavru doğurur, 3 çift tavşanımız olur
   4. Dördüncü ayın sonunda , ilk dişimiz yeni bir çift yavru daha doğurur, iki ay önce doğan dişi de bir çift yavru doğurur ve 5 çift tavşanımız vardır.

     Bu şekilde devam ederek  şu diziyi elde ederiz: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,89,144  Dizideki sayılar Ocak (ilk yavru çiftinin olduğu ay)  ile Aralık arasındaki ayların her birinde tavşan çiftlerinin sayısını vermektedir.

      Peki, bu diziyi böylesine ilginç kılan nedir?   Bunu üç ayrı nedene bağlayabiliriz.

   1. İlk  olarak dizinin küçük üyelerinin doğada, beklenmedik yerlerde karşımıza çıkmasıdır.; bitkiler, böcekler, çiçekler vb. şeylerle ilgili olarak..

   2. İkinci neden,  oranların limit değeri olan 0,618033989 sayısının çok önemli bir sayı olmasıdır. ALTIN ORAN diye adlandırılan bu sayı Leonardo Da Vinci'nin resimlerinden eski Yunan tapınaklarına kadar bir çok sanat eserinde ve doğada karşımıza çıkan bir sayıdır.

   3. Üçüncüsü ise sayılar teorisinde beklenmedik biçimde farklı bir çok kullanımı olmasıdır.

 

FİBONACCİ SAYILARI VE BİTKİLER

Eğer bir bitkiyi dikkatle incelerseniz fark edersiniz ki, yapraklar ,hiç bir yaprak alttaki yaprağı kapmayacak şekilde dizilmiştir. Bu da demektir ki, her bir yaprak güneş ışığın eşit bir şekilde paylaşıyor ve yağmur damlaları bitkinin her bir yaprağına değebiliyor.


      Bir bitkinin sapındaki yaprakların, bir ağacın dallarının üzerinde hemen her zaman Fibonacici sayıları bulursunuz. Eğer yapraklardan biri başlangıç noktası olarak alınırsa ve bundan başlayarak, aşağıya ya da yukarıya doğru, başlangıç noktasının tam üstünde veya altında bir yaprak buluncaya kadar yapraklar sayılırsa bulunan yaprak sayısı farklı bitkiler için değişik olacaktır ama her zaman bir Fibonacci sayısıdır.

      Fibonacci sayılarıyla bitki aleminde karşılaşmanın en çarpıcı örneklerinden biri ayçiçeği tohumlarında mevcut, saat ibresinin hareket yönünde ve buna karşı yönde uzayan iki tür spirallerin sayısının ardışık  iki Fibonacci sayısı olmasıdır. Orta büyüklükte ayçiçekleri için spirallerin sayısı 34´ karşılık 55 veya 55´e karşılık 89, daha büyükleri için 89´a karşılık 144, ve küçükler içinde 13´e karşılık 21 veya 21´e karşılık 34 olarak gözlenmiştir. 

Buna benzer bir durum papatya çiçeklerinde 21´e karşılık 34, ananaslarda 8´e karşılık 13, çam kozalaklarında 5´e karşılık 8 veya 8´e karşılık 13 olarak gözlenmiştir.


       Bitki aleminde yaprakların saplar üzerindeki dizilişi (phyllotaxy) ile Fibonacci sayıları arasındaki ilişkiye dair çok sayıda örnek vardır. Örneğin 2/5 kesri ile ifade edilen bir phyllotaxy, iki yaprağın sap boyunca aynı sıraya gelinceye kadar sap etrafında iki tur yaptığını ve sap boyunca 5 tane sıra  oluşturduğunu anlatmaktadır. Sap boyunca belli bir yapraktan sonra 6. yaprak aynı sırada (hizada) 
olup, ardışık iki yaprak sap etrafında 720/5=144 derecelik açı yapmaktadır. Bazı bitkiler için bu oranlar: Karaağaç, çim için 1/2, Kayın için 1/3, Meşe, elma, armut için 2/5, Kavak, muz için 3/8, Badem, pırasa için 5/13 olarak gözlenmiştir.

 

       Fibonacci dizisine büyüyen bir bitkinin üzerinde oluşan koltuk ve sap sayısında da rastlanır.

        Yukarıdaki şekilde olduğu gibi sağa doğru uzayan bir petek ve n numaralı gözeye ulaşmak isteyen ancak büyük numaralı gözeden küçük numaralı gözeye dönmeyen bir arı göz önüne alalım. Arı n numaralı gözeye ulaşmak için kaç farklı yol izleyebilir? n = 1, 2, ... için b(n), n numaralı gözeye ulaşmak için izlenebilecek yol sayısı olsun. b(1) = 1, b(2) = 2 olmak üzere arının n numaralı gözeye gelebilmesi için ya n-1 numaralı ya da n-2 numaralı gözeye gelmiş olması gerekir ki, buralara b(n-1) ve b(n-2) yoldan gelebileceğinden, b(n) = b(n-1) + b(n-2) indirgeme bağıntısı elde edilir ki buda Fibonacci dizisinin indirgeme bağıntısının kendisidir. 

(b(n)) dizisinin elemanları, 1, 2, 3, 5, 8, 13, ... olmak üzere 

bunlar bir eleman gecikmeli Fibonacci dizisinin elemanlarıdır.

Fibonacci serisi Ağaçta

fibonacci agac 5Z34C.gif

Fibonacci serisi Gülde

fibonacci serisi gul 6E53D

 

Fibonacci Altın Kare

fibonacci golden rectangle 4Z944

 

 

Altın oran

Bu dizinin ileri elemanlarında, bir sonraki elemanın bir öncekine oranı Altın oran adı verilen ve yaklaşık 1,618 (1:0,618) değerine eşit bir sayıyı verir.

Altın oran matematikte genellikle \varphi\, harfi ile gösterilir.

Tabiattaki canlılarda uzuvların oranı altın oran adı verilen 1.618... sayısına uygunluk gösterir. Antik mimari eserler ve bazı modern mimari eserler bu orana uygun tasarlanırlar. Altın orana uygun ölçülerdeki nesnelerin ve canlıların daha estetik olduğu ve güzelgöründüğü savunulur.

Ayçiçeğinin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru taneler sayıldığında çıkan sayılar Fibonacci Dizisinin ardışıksik terimleridir. Papatya Çiçeğinde de ayçiçeğinde olduğu gibi bir Fibonacci Dizisi mevcuttur. Fibonacci dizisinde ardışık elemanlar bir önceki elamanın oranındaki ardışık terimlerin farkıyla oluşan dizi de Fibonacci dizisidir. Ömer Hayyam üçgenindeki tüm katsayılar veya terimler yazılıp çapraz toplamları alındığında Fibonacci Dizisi ortaya çıkar. Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu taneler soldan sağa ve sağdan sola sayıldığında çıkan sayılar, Fibonacci Dizisi'nin ardışık terimleridir.Bitkilerin yapraklarının dizilişinde bir Fibonacci Dizisi söz konusudur; yani yaprakların diziliminde bu dizi mevcuttur. Mimar Sinan'ın da birçok eserinde Fibonacci dizisi görülmektedir. Mesela Süleymaniye ve Selimiye Camileri'nin minarelerinde bu dizi mevcuttur

  Ad Soyad
  Yorum